
CHAPTER 8

Perron–Frobenius
Theory of

Nonnegative Matrices

8.1 INTRODUCTION

A ∈ �m×n is said to be a nonnegative matrix whenever each aij ≥ 0, and
this is denoted by writing A ≥ 0. In general, A ≥ B means that each aij ≥ bij .
Similarly, A is a positive matrix when each aij > 0, and this is denoted by
writing A > 0. More generally, A > B means that each aij > bij .

Applications abound with nonnegative and positive matrices. In fact, many
of the applications considered in this text involve nonnegative matrices. For
example, the connectivity matrix C in Example 3.5.2 (p. 100) is nonnegative.
The discrete Laplacian L from Example 7.6.2 (p. 563) leads to a nonnegative
matrix because (4I − L) ≥ 0. The matrix eAt that defines the solution of
the system of differential equations in the mixing problem of Example 7.9.7
(p. 610) is nonnegative for all t ≥ 0. And the system of difference equations
p(k) = Ap(k − 1) resulting from the shell game of Example 7.10.8 (p. 635) has
a nonnegative coefficient matrix A.

Since nonnegative matrices are pervasive, it’s natural to investigate their
properties, and that’s the purpose of this chapter. A primary issue concerns
the extent to which the properties A > 0 or A ≥ 0 translate to spectral
properties—e.g., to what extent does A have positive (or nonnegative) eigen-
values and eigenvectors?

The topic is called the “Perron–Frobenius theory” because it evolved from
the contributions of the German mathematicians Oskar (or Oscar) Perron89 and

89
Oskar Perron (1880–1975) originally set out to fulfill his father’s wishes to be in the family busi-
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Ferdinand Georg Frobenius. 90 Perron published his treatment of positive matri-
ces in 1907, and in 1912 Frobenius contributed substantial extensions of Perron’s
results to cover the case of nonnegative matrices.

In addition to saying something useful, the Perron–Frobenius theory is ele-
gant. It is a testament to the fact that beautiful mathematics eventually tends
to be useful, and useful mathematics eventually tends to be beautiful.

ness, so he only studied mathematics in his spare time. But he was eventually captured by the
subject, and, after studying at Berlin, Tübingen, and Göttingen, he completed his doctorate,
writing on geometry, at the University of Munich under the direction of Carl von Lindemann
(1852–1939) (who first proved that π was transcendental). Upon graduation in 1906, Perron
held positions at Munich, Tübingen, and Heidelberg. Perron’s career was interrupted in 1915
by World War I in which he earned the Iron Cross. After the war he resumed work at Hei-
delberg, but in 1922 he returned to Munich to accept a chair in mathematics, a position he
occupied for the rest of his career. In addition to his contributions to matrix theory, Perron’s
work covered a wide range of other topics in algebra, analysis, differential equations, continued
fractions, geometry, and number theory. He was a man of extraordinary mental and physical
energy. In addition to being able to climb mountains until he was in his midseventies, Perron
continued to teach at Munich until he was 80 (although he formally retired at age 71), and he
maintained a remarkably energetic research program into his nineties. He published 18 of his
218 papers after he was 84.

90
Ferdinand Georg Frobenius (1849–1917) earned his doctorate under the supervision of Karl
Weierstrass (p. 589) at the University of Berlin in 1870. As mentioned earlier, Frobenius was
a mentor to and a collaborator with Issai Schur (p. 123), and, in addition to their joint work
in group theory, they were among the first to study matrix theory as a discipline unto itself.
Frobenius in particular must be considered along with Cayley and Sylvester when thinking
of core developers of matrix theory. However, in the beginning, Frobenius’s motivation came
from Kronecker (p. 597) and Weierstrass, and he seemed oblivious to Cayley’s work (p. 80).
It was not until 1896 that Frobenius became aware of Cayley’s 1857 work, A Memoir on
the Theory of Matrices, and only then did the terminology “matrix” appear in Frobenius’s
work. Even though Frobenius was the first to give a rigorous proof of the Cayley–Hamilton
theorem (p. 509), he generously attributed it to Cayley in spite of the fact that Cayley had
only discussed the result for 2 × 2 and 3 × 3 matrices. But credit in this regard is not overly
missed because Frobenius’s extension of Perron’s results are more substantial, and they alone
may keep Frobenius’s name alive forever.
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8.2 POSITIVE MATRICES

The purpose of this section is to focus on matrices An×n > 0 with positive en-
tries, and the aim is to investigate the extent to which this positivity is inherited
by the eigenvalues and eigenvectors of A.

There are a few elementary observations that will help along the way, so
let’s begin with them. First, notice that

A > 0 =⇒ ρ (A) > 0 (8.2.1)

because if σ (A) = {0}, then the Jordan form for A, and hence A itself, is
nilpotent, which is impossible when each aij > 0. This means that our discus-
sions can be limited to positive matrices having spectral radius 1 because A
can always be normalized by its spectral radius—i.e., A > 0 ⇐⇒ A/ρ (A) > 0,
and ρ (A) = r ⇐⇒ ρ(A/r) = 1. Other easily verified observations are

P > 0, x ≥ 0, x 	= 0 =⇒ Px > 0, (8.2.2)

N ≥ 0, u ≥ v ≥ 0 =⇒ Nu ≥ Nv, (8.2.3)

N ≥ 0, z > 0, Nz = 0 =⇒ N = 0, (8.2.4)

N ≥ 0, N 	= 0, u > v > 0 =⇒ Nu > Nv. (8.2.5)

In all that follows, the bar notation | � | is used to denote a matrix of
absolute values—i.e., |M| is the matrix having entries |mij |. The bar notation
will never denote a determinant in the sequel. Finally, notice that as a simple
consequence of the triangle inequality, it’s always true that |Ax| ≤ |A| |x|.

Positive Eigenpair
If An×n > 0, then the following statements are true.

• ρ (A) ∈ σ (A) . (8.2.6)

• If Ax = ρ (A)x, then A|x| = ρ (A) |x| and |x| > 0. (8.2.7)

In other words, A has an eigenpair of the form (ρ (A) ,v) with v > 0.

Proof. As mentioned earlier, it can be assumed that ρ (A) = 1 without any
loss of generality. If (λ,x) is any eigenpair for A such that |λ| = 1, then

|x| = |λ| |x| = |λx| = |Ax| ≤ |A| |x| = A |x| =⇒ |x| ≤ A |x|. (8.2.8)

The goal is to show that equality holds. For convenience, let z = A |x| and
y = z − |x|, and notice that (8.2.8) implies y ≥ 0. Suppose that y 	= 0—i.e.,
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suppose that some yi > 0. In this case, it follows from (8.2.2) that Ay > 0 and
z > 0, so there must exist a number ε > 0 such that Ay > ε z or, equivalently,

A
1 + ε

z > z.

Writing this inequality as Bz > z, where B = A/(1 + ε), and successively
multiplying both sides by B while using (8.2.5) produces

B2z > Bz > z, B3z > B2z > z, . . . =⇒ Bkz > z for all k = 1, 2, . . . .

But limk→∞ Bk = 0 because ρ (B) = σ
(
A/(1 + ε)

)
= 1/(1 + ε) < 1 (recall

(7.10.5) on p. 617), so, in the limit, we have 0 > z, which contradicts the fact
that z > 0. Since the supposition that y 	= 0 led to this contradiction, the
supposition must be false and, consequently, 0 = y = A |x| − |x|. Thus |x| is
an eigenvector for A associated with the eigenvalue 1 = ρ (A) . The proof is
completed by observing that |x| = A |x| = z > 0.

Now that it’s been established that ρ (A) > 0 is in fact an eigenvalue for
A > 0, the next step is to investigate the index of this special eigenvalue.

Index of ρ (A)

If An×n > 0, then the following statements are true.

• ρ (A) is the only eigenvalue of A on the spectral circle.

• index (ρ (A)) = 1. In other words, ρ (A) is a semisimple eigenvalue.
Recall Exercise 7.8.4 (p. 596).

Proof. Again, assume without loss of generality that ρ (A) = 1. We know from
(8.2.7) on p. 663 that if (λ,x) is an eigenpair for A such that |λ| = 1, then
0 < |x| = A |x|, so 0 < |xk| =

(
A |x|

)
k

=
∑n

j=1 akj |xj |. But it’s also true that
|xk| = |λ| |xk| = |(λx)k| = |(Ax)k| =

∣∣ ∑n
j=1 akjxj

∣∣, and thus∣∣∣ ∑
j

akjxj

∣∣∣ =
∑

j

akj |xj | =
∑

j

|akjxj |. (8.2.9)

For nonzero vectors {z1, . . . , zn} ⊂ Cn, it’s a fact that ‖
∑

j zj‖2 =
∑

j ‖zj‖2
(equality in the triangle inequality) if and only if each zj = αjz1 for some
αj > 0 (Exercise 5.1.10, p. 277). In particular, this holds for scalars, so (8.2.9)
insures the existence of numbers αj > 0 such that

akjxj = αj(ak1x1) or, equivalently, xj = πjx1 with πj =
αjak1

akj
> 0.



8.2 Positive Matrices 665

In other words, if |λ| = 1, then x = x1p, where p = (1, π2, . . . , πn)T > 0, so

λx = Ax =⇒ λp = Ap = |Ap| = |λp| = |λ|p = p =⇒ λ = 1,

and thus 1 is the only eigenvalue of A on the spectral circle. Now suppose that
index (1) = m > 1. It follows that

∥∥Ak
∥∥
∞ → ∞ as k → ∞ because there is

an m×m Jordan block J� in the Jordan form J = P−1AP that looks like
(7.10.30) on p. 629, so

∥∥Jk
�

∥∥
∞ → ∞, which in turn means that

∥∥Jk
∥∥
∞ → ∞

and, consequently,
∥∥Jk

∥∥
∞ =

∥∥P−1AkP
∥∥
∞ ≤

∥∥P−1
∥∥
∞

∥∥Ak
∥∥
∞ ‖P‖∞ implies

∥∥Ak
∥∥
∞ ≥

∥∥Jk
∥∥
∞

‖P−1‖∞ ‖P‖∞
→ ∞.

Let Ak =
[
a
(k)
ij

]
, and let ik denote the row index for which

∥∥Ak
∥∥
∞ =

∑
j a

(k)
ikj .

We know that there exists a vector p > 0 such that p = Ap, so for such an
eigenvector,

‖p‖∞ ≥ pik
=

∑
j

a
(k)
ikjpj ≥

(∑
j

a
(k)
ikj

)
(min

i
pi) =

∥∥Ak
∥∥
∞ (min

i
pi) → ∞.

But this is impossible because p is a constant vector, so the supposition that
index (1) > 1 must be false, and thus index (1) = 1.

Establishing that ρ (A) is a semisimple eigenvalue of A > 0 was just a
steppingstone (but an important one) to get to the following theorem concerning
the multiplicities of ρ (A) .

Multiplicities of ρ (A)

If An×n > 0, then alg multA (ρ (A)) = 1. In other words, the spectral
radius of A is a simple eigenvalue of A.

So dimN (A − ρ (A) I) = geo multA (ρ (A)) = alg multA (ρ (A)) = 1.

Proof. As before, assume without loss of generality that ρ (A) = 1, and sup-
pose that alg multA (λ = 1) = m > 1. We already know that λ = 1 is a
semisimple eigenvalue, which means that alg multA (1) = geo multA (1) (p. 510),
so there are m linearly independent eigenvectors associated with λ = 1. If x
and y are a pair of independent eigenvectors associated with λ = 1, then
x 	= αy for all α ∈ C. Select a nonzero component from y, say yi 	= 0,
and set z = x − (xi/yi)y. Since Az = z, we know from (8.2.7) on p. 663
that A|z| = |z| > 0. But this contradicts the fact that zi = xi − (xi/yi)yi = 0.
Therefore, the supposition that m > 1 must be false, and thus m = 1.
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Since N (A − ρ (A) I) is a one-dimensional space that can be spanned by
some v > 0, there is a unique eigenvector p ∈ N (A − ρ (A) I) such that p > 0
and

∑
j pj = 1 (it’s obtained by the normalization p = v/ ‖v‖1—see Exercise

8.2.3). This special eigenvector p is called the Perron vector for A > 0, and
the associated eigenvalue r = ρ (A) is called the Perron root of A.

Since A > 0 ⇐⇒ AT > 0, and since ρ(A) = ρ(AT ), it’s clear that
if A > 0, then in addition to the Perron eigenpair (r,p) for A there is a
corresponding Perron eigenpair (r,q) for AT . Because qT A = rqT , the vector
qT > 0 is called the left-hand Perron vector for A.

While eigenvalues of A > 0 other than ρ (A) may or may not be positive,
it turns out that no eigenvectors other than positive multiples of the Perron
vector can be positive—or even nonnegative.

No Other Positive Eigenvectors
There are no nonnegative eigenvectors for An×n > 0 other than the
Perron vector p and its positive multiples. (8.2.10)

Proof. If (λ,y) is an eigenpair for A such that y ≥ 0, and if x > 0 is the
Perron vector for AT , then xT y > 0 by (8.2.2), so

ρ (A)xT = xT A =⇒ ρ (A)xT y = xT Ay = λxT y =⇒ ρ (A) = λ.

In 1942 the German mathematician Lothar Collatz (1910–1990) discovered
the following formula for the Perron root, and in 1950 Helmut Wielandt (p. 534)
used it to develop the Perron–Frobenius theory.

Collatz–Wielandt Formula
The Perron root of An×n > 0 is given by r = maxx∈N f(x), where

f(x) = min
1≤i≤n
xi �=0

[Ax]i
xi

and N = {x |x ≥ 0 with x 	= 0}.

Proof. If ξ = f(x) for x ∈ N , then 0 ≤ ξx ≤ Ax. Let p and qT be the
respective the right-hand and left-hand Perron vectors for A associated with
the Perron root r, and use (8.2.3) along with qT x > 0 (by (8.2.2)) to write

ξx ≤ Ax =⇒ ξqT x ≤ qT Ax = rqT x =⇒ ξ ≤ r =⇒ f(x) ≤ r ∀ x ∈ N .

Since f(p) = r and p ∈ N , it follows that r = maxx∈N f(x).

Below is a summary of the results obtained in this section.
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Perron’s Theorem
If An×n > 0 with r = ρ (A) , then the following statements are true.

• r > 0. (8.2.11)

• r ∈ σ (A) (r is called the Perron root). (8.2.12)

• alg multA (r) = 1. (8.2.13)

• There exists an eigenvector x > 0 such that Ax = rx. (8.2.14)

• The Perron vector is the unique vector defined by

Ap = rp, p > 0, and ‖p‖1 = 1,

and, except for positive multiples of p, there are no other nonneg-
ative eigenvectors for A, regardless of the eigenvalue.

• r is the only eigenvalue on the spectral circle of A. (8.2.15)

• r = maxx∈N f(x) (the Collatz–Wielandt formula),

where f(x) = min
1≤i≤n
xi �=0

[Ax]i
xi

and N = {x |x ≥ 0 with x 	= 0}.

Note: Our development is the reverse of that of Wielandt and others in the
sense that we first proved the existence of the Perron eigenpair (r,p) without
reference to f(x) , and then we used the Perron eigenpair to established the
Collatz-Wielandt formula. Wielandt’s approach is to do things the other way
around—first prove that f(x) attains a maximum value on N , and then es-
tablish existence of the Perron eigenpair by proving that maxx∈N f(x) = ρ(A)
with the maximum value being attained at a positive eigenvector p.

Exercises for section 8.2

8.2.1. Verify Perron’s theorem by by computing the eigenvalues and eigenvec-
tors for

A =

 7 2 3
1 8 3
1 2 9

 .

Find the right-hand Perron vector p as well as the left-hand Perron
vector qT .
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8.2.2. Convince yourself that (8.2.2)–(8.2.5) are indeed true.

8.2.3. Provide the details that explain why the Perron vector is uniquely de-
fined.

8.2.4. Find the Perron root and the Perron vector for

A =
(

1 − α β
α 1 − β

)
,

where α+ β = 1 with α, β > 0.

8.2.5. Suppose that An×n > 0 has ρ(A) = r.
(a) Explain why limk→∞(A/r)k exists.
(b) Explain why limk→∞(A/r)k = G > 0 is the projector onto

N(A − rI) along R(A − rI).
(c) Explain why rank (G) = 1.

8.2.6. Prove that if every row (or column) sum of An×n > 0 is equal to ρ,
then ρ (A) = ρ.

8.2.7. Prove that if An×n > 0, then

min
i

n∑
j=1

aij ≤ ρ (A) ≤ max
i

n∑
j=1

aij .

Hint: Recall Example 7.10.2 (p. 619).

8.2.8. To show the extent to which the hypothesis of positivity cannot be re-
laxed in Perron’s theorem, construct examples of square matrices A
such that A ≥ 0, but A 	> 0 (i.e., A has at least one zero entry),
with r = ρ (A) ∈ σ (A) that demonstrate the validity of the following
statements. Different examples may be used for the different statements.

(a) r can be 0.
(b) alg multA (r) can be greater than 1.
(c) index (r) can be greater than 1.
(d) N(A − rI) need not contain a positive eigenvector.
(e) r need not be the only eigenvalue on the spectral circle.
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8.2.9. Establish the min-max version of the Collatz–Wielandt formula that
says the Perron root for A > 0 is given by r = minx∈P g(x), where

g(x) = max
1≤i≤n

[Ax]i
xi

and P = {x |x > 0}.

8.2.10. Notice that N = {x |x ≥ 0 with x 	= 0} is used in the max-min version
of the Collatz–Wielandt formula on p. 666, but P = {x |x > 0} is used
in the min-max version in Exercise 8.2.9. Give an example of a matrix
A > 0 that shows r 	= minx∈N g(x) when g(x) is defined as

g(x) = max
1≤i≤n
xi �=0

[Ax]i
xi

.
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8.3 NONNEGATIVE MATRICES

Now let zeros creep into the picture and investigate the extent to which Perron’s
results generalize to nonnegative matrices containing at least one zero entry. The
first result along these lines shows how to extend the statements on p. 663 to
nonnegative matrices by sacrificing the existence of a positive eigenvector for a
nonnegative one.

Nonnegative Eigenpair
For An×n ≥ 0 with r = ρ (A) , the following statements are true.

• r ∈ σ (A) , (but r = 0 is possible). (8.3.1)

• Az = rz for some z ∈ N = {x |x ≥ 0 with x 	= 0}. (8.3.2)

• r = maxx∈N f(x), where f(x) = min
1≤i≤n
xi �=0

[Ax]i
xi

(8.3.3)

(i.e., the Collatz–Wielandt formula remains valid).

Proof. Consider the sequence of positive matrices Ak = A + (1/k)E > 0,
where E is the matrix of all 1 ’s, and let rk > 0 and pk > 0 denote the
Perron root and Perron vector for Ak, respectively. Observe that {pk}∞k=1 is
a bounded set because it’s contained in the unit 1-sphere in �n. The Bolzano–
Weierstrass theorem states that each bounded sequence in �n has a convergent
subsequence. Therefore, {pk}∞k=1 has convergent subsequence

{pki
}∞i=1 → z, where z ≥ 0 with z 	= 0 (because pki

> 0 and ‖pki
‖1 = 1).

Since A1 > A2 > · · · > A, the result in Example 7.10.2 (p. 619) guarantees
that r1 ≥ r2 ≥ · · · ≥ r, so {rk}∞k=1 is a monotonic sequence of positive numbers
that is bounded below by r. A standard result from analysis guarantees that

lim
k→∞

rk = r� exists, and r� ≥ r. In particular, lim
i→∞

rki
= r� ≥ r.

But limk→∞ Ak = A implies limi→∞ Aki
→ A, so, by using the easily estab-

lished fact that the limit of a product is the product of the limits (provided that
all limits exist), it’s also true that

Az = lim
i→∞

Akipki = lim
i→∞

rkipki = r�z =⇒ r� ∈ σ (A) =⇒ r� ≤ r.

Consequently, r� = r, and Az = rz with z ≥ 0 and z 	= 0. Thus (8.3.1) and
(8.3.2) are proven. To prove (8.3.3), let qT

k > 0 be the left-hand Perron vector
of Ak. For every x ∈ N and k > 0 we have qT

k x > 0 (by (8.2.2)), and

0 ≤ f(x)x ≤ Ax ≤ Akx =⇒ f(x)qT
k x ≤ qT

k Akx = rkqT
k x =⇒ f(x) ≤ rk

=⇒ f(x) ≤ r (because rk→ r∗ =r).

Since f(z) = r and z ∈ N , it follows that maxx∈N f(x) = r.
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This is as far as Perron’s theorem can be generalized to nonnegative matrices
without additional hypothesis. For example, A =

(
0 1
0 0

)
shows that properties

(8.2.11), (8.2.13), and (8.2.14) on p. 667 do not hold for general nonnegative ma-
trices, and A =

(
0 1
1 0

)
shows that (8.2.15) is also lost. Rather than accepting

that the major issues concerning spectral properties of nonnegative matrices had
been settled, Frobenius had the insight to look below the surface and see that
the problem doesn’t stem just from the existence of zero entries, but rather from
the positions of the zero entries. For example, (8.2.13) and (8.2.14) are false for

A =
(

1 0
1 1

)
, but they are true for Ã =

(
1 1
1 0

)
. (8.3.4)

Frobenius’s genius was to see the difference between A and Ã in terms of re-
ducibility and to relate these ideas to spectral properties of nonnegative matrices.
Reducibility and graphs were discussed in Example 4.4.6 (p. 202) and Exercise
4.4.20 (p. 209), but for the sake of continuity they are reviewed below.

Reducibility and Graphs
• An×n is said to be a reducible matrix when there exists a permu-

tation matrix P such that

PT AP =
(

X Y
0 Z

)
, where X and Z are both square.

Otherwise A is said to be an irreducible matrix.

• PT AP is called a symmetric permutation of A. The effect is to
interchange rows in the same way as columns are interchanged.

• The graph G(A) of A is defined to be the directed graph on n
nodes {N1, N2, . . . , Nn} in which there is a directed edge leading
from Ni to Nj if and only if aij 	= 0.

• G(PT AP) = G(A) whenever P is a permutation matrix—the effect
is simply a relabeling of nodes.

• G(A) is called strongly connected if for each pair of nodes (Ni, Nk)
there is a sequence of directed edges leading from Ni to Nk.

• A is an irreducible matrix if and only if G(A) is strongly connected
(see Exercise 4.4.20 on p. 209).
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For example, the matrix A in (8.3.4) is reducible because

PT AP =
(

1 1
0 1

)
for P =

(
0 1
1 0

)
,

and, as can be seen from Figure 8.3.1, G(A) is not strongly connected because
there is no sequence of paths leading from node 1 to node 2. On the other
hand, Ã is irreducible, and as shown in Figure 8.3.1, G(Ã) is strongly connected
because each node is accessible from the other.

1 2 1 2

G(A) G(Ã)
Figure 8.3.1

This discussion suggests that some of Perron’s properties given on p. 667
extend to nonnegative matrices when the zeros are in just the right positions to
insure irreducibility. To prove that this is in fact the case, the following lemma is
needed. It shows how to convert a nonnegative irreducible matrix into a positive
matrix in a useful fashion.

Converting Nonnegativity & Irreducibility to Positivity
If An×n ≥ 0 is irreducible, then (I + A)n−1 > 0. (8.3.5)

Proof. Let a
(k)
ij denote the (i, j)-entry in Ak, and observe that

a
(k)
ij =

∑
h1,...,hk−1

aih1ah1h2 · · · ahk−1j > 0

if and only if there exists a set of indicies h1, h2, . . . , hk−1 such that

aih1 > 0 and ah1h2 > 0 and · · · and ahk−1j > 0.

In other words, there is a sequence of k paths Ni → Nh1 → Nh2 → · · · → Nj

in G(A) that lead from node Ni to node Nj if and only if a
(k)
ij > 0. The

irreducibility of A insures that G(A) is strongly connected, so for any pair of
nodes (Ni, Nj) there is a sequence of k paths (with k < n) from Ni to Nj .
This means that for each position (i, j), there is some 0 ≤ k ≤ n− 1 such that
a
(k)
ij > 0, and this guarantees that for each i and j,

[
(I + A)n−1

]
ij

=

[
n−1∑
k=0

(
n− 1
k

)
Ak

]
ij

=
n−1∑
k=0

(
n− 1
k

)
a
(k)
ij > 0.
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With the exception of the Collatz–Wielandt formula, we have seen that
ρ (A) ∈ σ (A) is the only property in the list of Perron properties on p. 667
that extends to nonnegative matrices without additional hypothesis. The next
theorem shows how adding irreducibility to nonnegativity recovers the Perron
properties (8.2.11), (8.2.13), and (8.2.14).

Perron–Frobenius Theorem
If An×n ≥ 0 is irreducible, then each of the following is true.

• r = ρ (A) ∈ σ (A) and r > 0. (8.3.6)

• alg multA (r) = 1. (8.3.7)

• There exists an eigenvector x > 0 such that Ax = rx. (8.3.8)

• The unique vector defined by

Ap = rp, p > 0, and ‖p‖1 = 1, (8.3.9)

is called the Perron vector. There are no nonnegative eigenvectors
for A except for positive multiples of p, regardless of the eigenvalue.

• The Collatz–Wielandt formula r = maxx∈N f(x),

where f(x) = min
1≤i≤n
xi �=0

[Ax]i
xi

and N = {x |x ≥ 0 with x 	= 0}

was established in (8.3.3) for all nonnegative matrices, but it is in-
cluded here for the sake of completeness.

Proof. We already know from (8.3.2) that r = ρ (A) ∈ σ (A) . To prove that
alg multA (r) = 1, let B = (I + A)n−1 > 0 be the matrix in (8.3.5). It fol-
lows from (7.9.3) that λ ∈ σ (A) if and only if (1 + λ)n−1 ∈ σ (B) , and
alg multA (λ) = alg multB

(
(1 + λ)n−1

)
. Consequently, if µ = ρ (B) , then

µ = max
λ∈σ(A)

|(1 + λ)|n−1 =
{

max
λ∈σ(A)

|(1 + λ)|
}n−1

= (1 + r)n−1

because when a circular disk |z| ≤ ρ is translated one unit to the right, the point
of maximum modulus in the resulting disk |z + 1| ≤ ρ is z = 1 + ρ (it’s clear if
you draw a picture). Therefore, alg multA (r) = 1; otherwise alg multB (µ) > 1,
which is impossible because B > 0. To see that A has a positive eigenvector
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associated with r, recall from (8.3.2) that there exists a nonnegative eigenvector
x ≥ 0 associated with r. It’s a simple consequence of (7.9.9) that if (λ,x) is an
eigenpair for A, then (f(λ),x) is an eigenpair for f(A) (Exercise 7.9.9, p. 613),
so (r,x) being an eigenpair for A implies that (µ,x) is an eigenpair for B.
Hence (8.2.10) insures that x must be a positive multiple of the Perron vector
of B, and thus x must in fact be positive. Now, r > 0; otherwise Ax = 0,
which is impossible because A ≥ 0 and x > 0 forces Ax > 0. The argument
used to prove (8.2.10) also proves (8.3.9).

Example 8.3.1

Problem: Suppose that An×n ≥ 0 is irreducible with r = ρ (A) , and suppose
that rz ≤ Az for z ≥ 0. Explain why rz = Az, and z > 0.

Solution: If rz < Az, then by using the Perron vector q > 0 for AT we have
(A − rI)z ≥ 0 =⇒ qT (A − rI)z > 0,

which is impossible since qT (A − rI) = 0. Thus rz = Az, and since z must
be a multiple of the Perron vector for A by (8.3.9), we also have that z > 0.

The only property in the list on p. 667 that irreducibility is not able to
salvage is (8.2.15), which states that there is only one eigenvalue on the spectral
circle. Indeed, A =

(
0 1
1 0

)
is nonnegative and irreducible, but the eigenvalues

±1 are both on the unit circle. The property of having (or not having) only
one eigenvalue on the spectral circle divides the set of nonnegative irreducible
matrices into two important classes.

Primitive Matrices
• A nonnegative irreducible matrix A having only one eigenvalue,

r = ρ (A) , on its spectral circle is said to be a primitive matrix.

• A nonnegative irreducible matrix having h > 1 eigenvalues on its
spectral circle is called imprimitive, and h is referred to as index
of imprimitivity.

• A nonnegative irreducible matrix A with r = ρ (A) is primitive if
and only if limk→∞(A/r)k exists, in which case

lim
k→∞

(A
r

)k

= G =
pqT

qT p
> 0, (8.3.10)

where p and q are the respective Perron vectors for A and AT .
G is the (spectral) projector onto N(A − rI) along R(A − rI).
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Proof of (8.3.10). The Perron–Frobenius theorem insures that 1 = ρ(A/r) is a
simple eigenvalue for A/r, and it’s clear that A is primitive if and only if A/r
is primitive. In other words, A is primitive if and only if 1 = ρ(A/r) is the only
eigenvalue on the unit circle, which is equivalent to saying that limk→∞(A/r)k

exists by the results on p. 630. The structure of the limit as described in (8.3.10)
is the result of (7.2.12) on p. 518.

The next two results, discovered by Helmut Wielandt (p. 534) in 1950,
establish the remarkable fact that the eigenvalues on the spectral circle of an
imprimitive matrix are in fact the hth roots of the spectral radius.

Wielandt’s Theorem
If |B| ≤ An×n, where A is irreducible, then ρ (B) ≤ ρ (A) . If equality
holds (i.e., if µ = ρ (A) eiφ ∈ σ (B) for some φ), then

B = eiφDAD−1 for some D =


eiθ1

eiθ2

. . .
eiθn

 , (8.3.11)

and conversely.

Proof. We already know that ρ (B) ≤ ρ (A) by Example 7.10.2 (p. 619). If
ρ (B) = r = ρ (A) , and if (µ,x) is an eigenpair for B such that |µ| = r, then

r|x| = |µ| |x| = |µx| = |Bx| ≤ |B| |x| ≤ A|x| =⇒ |B| |x| = r|x|

because the result in Example 8.3.1 insures that A|x| = r|x|, and |x| > 0.
Consequently, (A − |B|)|x| = 0. But A − |B| ≥ 0, and |x| > 0, so A = |B|
by (8.2.4). Since xk/|xk| is on the unit circle, xk/|xk| = eiθk for some θk. Set

D =


eiθ1

eiθ2

. . .
eiθn

 , and notice that x = D|x|.

Since |µ| = r, there is a φ ∈ � such that µ = reiφ, and hence

BD|x|=Bx=µx=reiφx=reiφD|x| ⇒ e−iφD−1BD|x|=r|x|=A|x|. (8.3.12)

For convenience, let C = e−iφD−1BD, and note that |C| = |B| = A to write
(8.3.12) as 0 = (|C| − C)|x|. Considering only the real part of this equation
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yields 0 =
(
|C| − Re (C)

)
|x|. But |C| ≥ Re (C) , and |x| > 0, so it follows

from (8.2.4) that Re (C) = |C|, and hence

Re (cij) = |cij | =
√

Re (cij)
2 + Im (cij)

2 =⇒ Im (cij) = 0 =⇒ Im (C) = 0.

Therefore, C = Re (C) = |C| = A, which implies B = eiφDAD−1. Conversely,
if B = eiφDAD−1, then similarity insures that ρ (B) = ρ

(
eiφA

)
= ρ (A) .

hth Roots of ρ (A) on Spectral Circle
If An×n ≥ 0 is irreducible and has h eigenvalues {λ1, λ2, . . . , λh} on
its spectral circle, then each of the following statements is true.

• alg multA (λk) = 1 for k = 1, 2, . . . , h. (8.3.13)

• {λ1, λ2, . . . , λh} are the hth roots of r = ρ (A) given by

{r, rω, rω2, . . . , rωh−1}, where ω = e2πi/h. (8.3.14)

Proof. Let S = {r, reiθ1 , . . . , reiθh−1} denote the eigenvalues on the spectral
circle of A. Applying (8.3.11) with B = A and µ = reiθk insures the existence
of a diagonal matrix Dk such that A = eiθkDkAD−1

k , thus showing that eiθkA
is similar to A. Since r is a simple eigenvalue of A (by the Perron–Frobenius
theorem), reiθk must be a simple eigenvalue of eiθkA. But similarity transfor-
mations preserve eigenvalues and algebraic multiplicities (because the Jordan
structure is preserved), so reiθk must be a simple eigenvalue of A, thus estab-
lishing (8.3.13). To prove (8.3.14), consider another eigenvalue reiθs ∈ S. Again,
we can write A = eiθsDsAD−1

s for some Ds, so

A = eiθkDkAD−1
k = eiθkDk(eiθsDsAD−1

s )D−1
k = ei(θk+θr)(DkDs)A(DkDs)−1

and, consequently, rei(θk+θr) is also an eigenvalue on the spectral circle of A.
In other words, S = {r, reiθ1 , . . . , reiθh−1} is closed under multiplication. This
means that G = {1, eiθ1 , . . . , eiθh−1} is closed under multiplication, and it follows
that G is a finite commutative group of order h. A standard result from algebra
states that the hth power of every element in a finite group of order h must be
the identity element in the group. Therefore, (eiθk)h = 1 for each 0 ≤ k ≤ h−1,
so G is the set of the hth roots of unity e2πki/h ( 0 ≤ k ≤ h− 1), and thus S
must be the hth roots of r.

Combining the preceding results reveals just how special the spectrum of an
imprimitive matrix is.
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Rotational Invariance
If A is imprimitive with h eigenvalues on its spectral circle, then σ (A)
is invariant under rotation about the origin through an angle 2π/h. No
rotation less than 2π/h can preserve σ (A) . (8.3.15)

Proof. Since λ ∈ σ (A) ⇐⇒ λe2πi/h ∈ σ(e2πi/hA), it follows that σ(e2πi/hA)
is σ (A) rotated through 2π/h. But (8.3.11) and (8.3.14) insure that A and
e2πi/hA are similar and, consequently, σ (A) = σ(e2πi/hA). No rotation less
than 2π/h can keep σ (A) invariant because (8.3.14) makes it clear that the
eigenvalues on the spectral circle won’t go back into themselves for rotations less
than 2π/h.

Example 8.3.2

The Spectral Projector Is Positive. We already know from (8.3.10) that
if A is a primitive matrix, and if G is the spectral projector associated with
r = ρ (A) , then G > 0.

Problem: Explain why this is also true for an imprimitive matrix. In other
words, establish the fact that if G is the spectral projector associated with
r = ρ (A) for any nonnegative irreducible matrix A, then G > 0.

Solution: Being imprimitive means that A is nonnegative and irreducible with
more than one eigenvalue on the spectral circle. However, (8.3.13) says that
each eigenvalue on the spectral circle is simple, so the results concerning Cesàro
summability on p. 633 can be applied to A/r to conclude that

lim
k→∞

I + (A/r) + · · · + (A/r)k−1

k
= G,

where G is the spectral projector onto N((A/r) − I) = N(A − rI) along
R((A/r) − I) = R(A − rI). Since r is a simple eigenvalue the same argument
used to establish (8.3.10) (namely, invoking (7.2.12) on p. 518) shows that

G =
pqT

qT p
> 0,

where p and q are the respective Perron vectors for A and AT .

Trying to determine if an irreducible matrix A ≥ 0 is primitive or imprim-
itive by finding the eigenvalues is generally a difficult task, so it’s natural to ask
if there’s another way. It turns out that there is, and, as the following example
shows, determining primitivity can sometimes be trivial.
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Example 8.3.3

Sufficient Condition for Primitivity. If a nonnegative irreducible matrix A
has at least one positive diagonal element, then A is primitive.

Proof. Suppose there are h > 1 eigenvalues on the spectral circle. We know
from (8.3.15) that if λ0 ∈ σ (A) , then λk = λ0e2πik/h ∈ σ (A) for k =
0, 1, . . . , h− 1, so

h−1∑
k=0

λk = λ0

h−1∑
k=0

e2πik/h = 0 (roots of unity sum to 1—see p. 357).

This implies that the sum of all of the eigenvalues is zero. In other words,

• if A is imprimitive, then trace (A) = 0. (Recall (7.1.7) on p. 494.)

Therefore, if A has a positive diagonal entry, then A must be primitive.

Another of Frobenius’s contributions was to show how the powers of a non-
negative matrix determine whether or not the matrix is primitive. The exact
statement is as follows.

Frobenius’s Test for Primitivity
A ≥ 0 is primitive if and only if Am > 0 for some m > 0. (8.3.16)

Proof. First assume that Am > 0 for some m. This implies that A is irre-
ducible; otherwise there exists a permutation matrix such that

A = P
(

X Y
0 Z

)
PT =⇒ Am = P

(
Xm �
0 Zm

)
PT has zero entries.

Suppose that A has h eigenvalues {λ1, λ2, . . . , λh} on its spectral circle so
that r = ρ (A) = |λ1| = · · · = |λh| > |λh+1| > · · · > |λn|. Since λ ∈ σ (A)
implies λm ∈ σ(Am) with alg multA (λ) = alg multAm (λm) (consider the Jor-
dan form—Exercise 7.9.9 on p. 613), it follows that λm

k (1 ≤ k ≤ h) is on the
spectral circle of Am with alg multA (λk) = alg multAm (λm

k ) . Perron’s theo-
rem (p. 667) insures that Am has only one eigenvalue (which must be rm) on
its spectral circle, so rm = λm

1 = λm
2 = · · · = λm

h . But this means that

alg multA (r) = alg multAm (rm) = h,

and therefore h = 1 by (8.3.7). Conversely, if A is primitive with r = ρ (A) ,
then limk→∞(A/r)k > 0 by (8.3.10). Hence there must be some m such that
(A/r)m > 0, and thus Am > 0.
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Example 8.3.4

Suppose that we wish to decide whether or not a nonnegative matrix A is
primitive by computing the sequence of powers A,A2,A3, . . . . Since this can be
a laborious task, it would be nice to know when we have computed enough powers
of A to render a judgement. Unfortunately there is nothing in the statement or
proof of Frobenius’s test to help us with this decision. But Wielandt provided
an answer by proving that a nonnegative matrix An×n is primitive if and only
if An2−2n+2 > 0. Furthermore, n2 − 2n + 2 is the smallest such exponent
that works for the class of n× n primitive matrices having all zeros on the
diagonal—see Exercise 8.3.9.

Problem: Determine whether or not A =
(

0 1 0
0 0 2
3 4 0

)
is primitive.

Solution: Since A has zeros on the diagonal, the result in Example 8.3.3 doesn’t
apply, so we are forced into computing powers of A. This job is simplified by
noticing that if B = β(A) is the Boolean matrix that results from setting

bij =
{

1 if aij > 0,
0 if aij = 0,

then [Bk]ij > 0 if and only if [Ak]ij > 0 for every k > 0. This means that
instead of using A,A2,A3, . . . to decide on primitivity, we need only compute

B1 = β(A), B2 = β(B1B1), B3 = β(B1B2), B4 = β(B1B3), . . . ,

going no further than Bn2−2n+2, and these computations require only Boolean
operations AND and OR. The matrix A in this example is primitive because

B1 =

(
0 1 0
0 0 1
1 1 0

)
, B2 =

(
0 0 1
1 1 0
0 1 1

)
, B3 =

(
1 1 0
0 1 1
1 1 1

)
, B4 =

(
0 1 1
1 1 1
1 1 1

)
, B5 =

(
1 1 1
1 1 1
1 1 1

)
.

The powers of an irreducible matrix A ≥ 0 can tell us if A has more
than one eigenvalue on its spectral circle, but the powers of A provide no clue
to the number of such eigenvalues. The next theorem shows how the index of
imprimitivity can be determined without explicitly calculating the eigenvalues.

Index of Imprimitivity
If c(x) = xn + ck1x

n−k1 + ck2x
n−k2 + · · · + cksx

n−ks = 0 is the char-
acteristic equation of an imprimitive matrix An×n in which only the
terms with nonzero coefficients are listed (i.e., each ckj

	= 0, and
n > (n − k1) > · · · > (n − ks)), then the index of imprimitivity h
is the greatest common divisor of {k1, k2, . . . , ks}.
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Proof. We know from (8.3.15) that if {λ1, λ2, . . . , λn} are the eigenvalues of
A (including multiplicities), then {ωλ1, ωλ2, . . . , ωλn} are also the eigenvalues
of A, where ω = e2πi/h. It follows from the results on p. 494 that

ckj
= (−1)kj

∑
1≤i1<···<ikj

≤n

λi1 · · ·λikj
= (−1)kj

∑
1≤i1<···<ikj

≤n

ωλi1 · · ·ωλikj
= ωkjckj

=⇒ ωkj = 1.

Therefore, h must divide each kj . If d divides each kj with d > h, then
γ−kj = 1 for γ = e2πi/d. Hence γλ ∈ σ (A) for each λ ∈ σ (A) because
c(γλ) = 0. But this means that σ (A) is invariant under a rotation through
an angle (2π/d) < (2π/h), which, by (8.3.15), is impossible.

Example 8.3.5

Problem: Find the index of imprimitivity of A =

 0 1 0 0
2 0 1 0
0 1 0 2
0 0 1 0

.

Solution: Using the principal minors to compute the characteristic equation as
illustrated in Example 7.1.2 (p. 496) produces the characteristic equation

c(x) = x4 − 5x2 + 4 = 0,

so that k1 = 2 and k2 = 4. Since gcd{2, 4} = 2, it follows that h = 2. The
characteristic equation is relatively simple in this example, so the eigenvalues
can be explicitly determined to be {±2,±1}. This corroborates the fact that
h = 2. Notice also that this illustrates the property that σ (A) is invariant
under rotation through an angle 2π/h = π.

More is known about nonnegative matrices than what has been presented
here—in fact, there are entire books on the subject. But before moving on to
applications, there is a result that Frobenius discovered in 1912 that is worth
mentioning because it completely reveals the structure of an imprimitive matrix.

Frobenius Form
For each imprimitive matrix A with index of imprimitivity h > 1,
there exists a permutation matrix P such that

PT AP=


0 A12 0 · · · 0
0 0 A23 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 Ah−1,h

Ah1 0 · · · 0 0

,

where the zero blocks on the main diagonal are square.
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Example 8.3.6

Leontief’s91 Input–Output Economic Model. Suppose that n major indus-
tries in a closed economic system each make one commodity, and let a J-unit be
what industry J produces that sells for $1. For example, the Boeing Company
makes airplanes, and the Champion Company makes rivets, so a BOEING-unit
is only a tiny fraction of an airplane, but a CHAMPION-unit might be several
rivets. If

0 ≤ sj = # J-units produced by industry J each year, and if
0 ≤ aij = # I-units needed to produce one J-unit ,

then
aijsj = # I-units consumed by industry J each year, and

n∑
j=1

aijsj = # I-units consumed by all industries each year,

so

di = si −
n∑

j=1

aijsj = # I-units available to the public (nonindustry) each year.

Consider d = (d1, d2, . . . , dn)T to be the public demand vector, and think of
s = (s1, s2, . . . , sn)T as the industrial supply vector.

Problem: Determine the supply s ≥ 0 that is required to satisfy a given
demand d ≥ 0.

Solution: At first glance the problem seems to be trivial because the equations
di = si −

∑n
j=1 aijsj translate to (I−A)s = d, so if I−A is nonsingular, then

s = (I−A)−1d. The catch is that this solution may have negative components in
spite of the fact that A ≥ 0. So something must be added. It’s not unreasonable
to assume that major industries are strongly connected in the sense that the
commodity of each industry is either directly or indirectly needed to produce
all commodities in the system. In other words, it’s reasonable to assume that

91
Wassily Leontief (1906–1999) was the 1973 Nobel Laureate in Economics. He was born in St.
Petersburg (now Leningrad), where his father was a professor of economics. After receiving his
undergraduate degree in economics at the University of Leningrad in 1925, Leontief went to
the University of Berlin to earn a Ph.D. degree. He migrated to New York in 1931 and moved
to Harvard University in 1932, where he became Professor of Economics in 1946. Leontief spent
a significant portion of his career developing and applying his input–output analysis, which
eventually led to the famous “Leontief paradox.” In the U.S. economy of the 1950s, labor was
considered to be scarce while capital was presumed to be abundant, so the prevailing thought
was that U.S. foreign trade was predicated on trading capital-intensive goods for labor-intensive
goods. But Leontief’s input–output tables revealed that just the opposite was true, and this
contributed to his fame. One of Leontief’s secret weapons was the computer. He made use
of large-scale computing techniques (relative to the technology of the 1940s and 1950s), and
he was among the first to put the Mark I (one of the first electronic computers) to work on
nonmilitary projects in 1943.
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G(A) is a strongly connected graph so that in addition to being nonnegative,
A is an irreducible matrix. Furthermore, it’s not unreasonable to assume that
ρ (A) < 1. To understand why, notice that the jth column sum of A is

cj =
n∑

i=1

aij = total number of all units required to make one J-unit

= total number of dollars spent by J to create $1 of revenue.

In a healthy economy all major industries should have cj ≤ 1, and there should
be at least one major industry such that cj < 1. This means that there exists a
matrix E ≥ 0, but E 	= 0, such that each column sum of A + E is 1, so

eT (A + E) = eT , where eT is the row of all 1 ’s.

This forces ρ (A) < 1; otherwise the Perron vector p > 0 for A can be used
to write

1 = eT p = eT (A + E)p = 1 + eT Ep > 1

because
E ≥ 0, E 	= 0, p > 0 =⇒ Ep > 0.

(Conditions weaker than the column-sum condition can also force ρ (A) < 1—see
Example 7.10.3 on p. 620.) The assumption that A is a nonnegative irreducible
matrix whose spectral radius is ρ (A) < 1 combined with the Neumann series
(p. 618) provides the conclusion that

(I − A)−1 =
∞∑

k=0

Ak > 0.

Positivity is guaranteed by the irreducibility of A because the same argu-
ment given on p. 672 that is to prove (8.3.5) also applies here. Therefore, for
each demand vector d ≥ 0, there exists a unique supply vector given by
s = (I − A)−1d, which is necessarily positive. The fact that (I − A)−1 > 0
and s > 0 leads to the interesting conclusion that an increase in public demand
by just one unit from a single industry will force an increase in the output of all
industries.

Note: The matrix I − A is an M-matrix as defined and discussed in Example
7.10.7 (p. 626). The realization that M-matrices are naturally present in economic
models provided some of the motivation for studying M-matrices during the first
half of the twentieth century. Some of the M-matrix properties listed on p. 626
were independently discovered and formulated in economic terms.
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Example 8.3.7

Leslie Population Age Distribution Model. Divide a population of females
into age groups G1, G2, . . . , Gn, where each group covers the same number of
years. For example,

G1 = all females under age 10,
G2 = all females from age 10 up to 20,
G1 = all females from age 20 up to 30,
...

Consider discrete points in time, say t = 0, 1, 2, . . . years, and let bk and sk

denote the birth rate and survival rate for females in Gk. That is, let

bk = Expected number of daughters produced by a female in Gk,

sk = Proportion of females in Gk at time t that are in Gk+1 at time t+ 1.

If

fk(t) = Number of females in Gk at time t,
then it follows that

f1(t+ 1) = f1(t)b1 + f2(t)b2 + · · · + fn(t)bn
and (8.3.17)

fk(t+ 1) = fk−1(t)sk−1 for k = 2, 3, . . . , n.

Furthermore,

Fk(t) =
fk(t)

f1(t) + f2(t) + · · · + fn(t)
= % of population in Gk at time t.

The vector F(t) = (F1(t), F2(t), . . . , Fn(t))T represents the population age dis-
tribution at time t, and, provided that it exists, F� = limt→∞ F(t) is the
long-run (or steady-state) age distribution.

Problem: Assuming that s1, . . . , sn and b2, . . . , bn are positive, explain why
the population age distribution approaches a steady state, and then describe it.
In other words, show that F� = limt→∞ F(t) exists, and determine its value.

Solution: The equations in (8.3.17) constitute a system of homogeneous differ-
ence equations that can be written in matrix form as

f(t+ 1) = Lf(t), where L =


b1 b2 · · · bn−1 bn
s1 0 · · · · · · 0
0 s2 0 0
...

. . . . . .
...

0 0 · · · sn 0


n×n

. (8.3.18)
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The matrix L is called the Leslie matrix in honor of P. H. Leslie who used this
model in 1945. Notice that in addition to being nonnegative, L is also irreducible
when s1, . . . , sn and b2, . . . , bn are positive because the graph G(L) is strongly
connected. Moreover, L is primitive. This is obvious if in addition to s1, . . . , sn

and b2, . . . , bn being positive we have b1 > 0 (recall Example 8.3.3 on p. 678).
But even if b1 = 0, L is still primitive because Ln+2 > 0 (recall (8.3.16) on
p. 678). The technique on p. 679 also can be used to show primitivity (Exercise
8.3.11). Consequently, (8.3.10) on p. 674 guarantees that

lim
t→∞

(L
r

)t

= G =
pqT

qT p
> 0,

where p > 0 and q > 0 are the respective Perron vectors for L and LT . If we
combine this with the fact that the solution to the system of difference equations
in (8.3.18) is f(t) = Ltf(0) (p. 617), and if we assume that f(0) 	= 0, then we
arrive at the conclusion that

lim
t→∞

f(t)
rt

= Gf(0) = p

(
qT f(0)
qT p

)
and lim

t→∞

∥∥∥∥ f(t)
rt

∥∥∥∥
1

=
qT f(0)
qT p

> 0 (8.3.19)

(because ‖�‖1 is a continuous function—Exercise 5.1.7 on p. 277). Now

Fk(t) =
fk(t)
‖f(t)‖1

= % of population that is in Gk at time t

is the quantity of interest, and (8.3.19) allows us to conclude that

F� = lim
t→∞

F(t) = lim
t→∞

f(t)
‖f(t)‖1

= lim
t→∞

f(t)/rt

‖f(t)‖1 /r
t

=
limt→∞ f(t)/rt

limt→∞ ‖f(t)‖1 /r
t

= p (the Perron vector!).

In other words, while the numbers in the various age groups may increase or
decrease, depending on the value of r (Exercise 8.3.10), the proportion of in-
dividuals in each age group becomes stable as time increases. And because the
steady-state age distribution is given by the Perron vector of L, each age group
must eventually contain a positive fraction of the population.

Exercises for section 8.3

8.3.1. Let A =
(

0 1 0
3 0 3
0 2 0

)
.

(a) Show that A is irreducible.
(b) Find the Perron root and Perron vector for A.
(c) Find the number of eigenvalues on the spectral circle of A.
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8.3.2. Suppose that the index of imprimitivity of a 5 × 5 nonnegative irre-
ducible matrix A is h = 3. Explain why A must be singular with
alg multA (0) = 2.

8.3.3. Suppose that A is a nonnegative matrix that possesses a positive spec-
tral radius and a corresponding positive eigenvector. Does this force A
to be irreducible?

8.3.4. Without computing the eigenvalues or the characteristic polynomial,
explain why σ (Pn) = {1, ω, ω2, . . . , ωn−1}, where ω = e2πi/n for

Pn=


0 1 0 · · · 0
0 0 1 · · · 0
.
.
.

.

.

.
. . .

. . .
.
.
.

0 0 · · · 0 1
1 0 0 · · · 0

 .

8.3.5. Determine whether A =

 0 1 2 0 0
0 0 0 7 0
2 0 0 0 0
0 9 2 0 4
0 0 0 1 0

 is reducible or irreducible.

8.3.6. Determine whether the matrix A in Exercise 8.3.5 is primitive or im-
primitive.

8.3.7. A matrix Sn×n ≥ 0 having row sums less than or equal to 1 with at
least one row sum less than 1 is called a substochastic matrix.

(a) Explain why ρ (S) ≤ 1 for every substochastic matrix.
(b) Prove that ρ (S) < 1 for every irreducible substochastic matrix.

8.3.8. A nonnegative matrix for which each row sum is 1 is called a stochastic
matrix (some say row -stochastic). Prove that if An×n is nonnegative
and irreducible with r = ρ (A) , then A is similar to rP for some ir-

reducible stochastic matrix P. Hint: Consider D=


p1 0 · · · 0
0 p2 · · · 0
...

...
. . .

...
0 0 · · · pn

,

where the pk ’s are the components of the Perron vector for A.

8.3.9. Wielandt constructed the matrix Wn=


0 1 0 · · · 0
0 0 1 · · · 0
.
.
.

.

.

.
. . .

. . .
.
.
.

0 0 · · · 0 1
1 1 0 · · · 0

 to show

that Wn2−2n+2 > 0, but [Wn2−2n+1]11 = 0. Verify that this is true
for n = 4.
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8.3.10. In the Leslie population model on p. 683, explain what happens to the
vector f(t) as t → ∞ depending on whether r < 1, r = 1, or r > 1.

8.3.11. Use the characteristic equation as described on p. 679 to show that the
Leslie matrix in (8.3.18) is primitive even if b1 = 0 (assuming all other
bk ’s and sk ’s are positive).

8.3.12. A matrix A ∈ �n×n is said to be essentially positive if A is irre-
ducible and aij ≥ 0 for every i 	= j. Prove that each of the following
statements is equivalent to saying that A is essentially positive.

(a) There exists some α ∈ � such that A + αI is primitive.
(b) etA > 0 for all t > 0.

8.3.13. Let A be an essentially positive matrix as defined in Exercise 8.3.12.
Prove that each of the following statements is true.

(a) A has an eigenpair (ξ,x), where ξ is real and x > 0.
(b) If λ is any eigenvalue for A other than ξ, then Re (λ) < ξ.
(c) ξ increases when any entry in A is increased.

8.3.14. Let A ≥ 0 be an irreducible matrix, and let a
(k)
ij denote entries in Ak.

Prove that A is primitive if and only if

ρ (A) = lim
k→∞

[
a
(k)
ij

]1/k

.


